2 hour workshop

From concept to reality – how we create, and render characters in CRX

· We use blender to create, rig and animate a mesh(open martian in blender to demo)

· There are specific frame groups needed(show this)

· In order for the game to use ragdolls, you must use the correct bone nomenclature.(show this)

· After animating, export the model to the interquake model format(demonstrate)

· The model is first loaded when a level begins, and the base frame stays in memory

· At each renderframe, a frame number is specified, and a routine is called that applies the skeleton to the base frame vertexes.

· These vertexes are then used to build a new vertex array for rendering.

· There are several “levels” of rendering that we use in CRX

· The base method, uses a simple lighting method and no shaders, done in one pass only.(demonstrate this in iqmtest)

· The secondary method does one pass for each shader stage, and uses a vertex lighting algorithm for a more realistic lighting effect(iqmtest)

· The third method does one pass, but uses GLSL to do per pixel lighting, shader effects and specular highlights(iqmtest)

· If a model has a ragdoll, a different section of code takes over when an entity reaches death frames(show how a ragdoll works).

· The ragdoll is spawned, and the rigid bodies collide against a trimesh that is created at map load time

· The information from the rigid ODE bodies is then applied to the skeleton, which then is applied to the vertexes

· After an amount of time passes, a ragdoll floats away, then fades and is deleted off of the stack

· Shadows are rendered several ways(basic stencil, blurred stencil volumes, and shadowmaps)(show each type).

· The basic stencil shadows build a vertex array from the manipulated vertexes

· The shadow volumes are trickier. They are projected similarly to Doom 3

· These are rendered into an offscreen Frame Buffer Object

· The stencil buffer is then blitted from the FBO, and placed into another FBO

· This FBO is blurred using GLSL and the resulting image is overlayed over the scene

· For dynamic lighting, we use shadowmapping

· This works well because of it being a single light source

· A textureless version of the scene is rendered for the depth buffer

· This data is then subtracted from the dynamic light, resulting in perfect, fading penumbras

Next hour

How we render a map surface, using GLSL, batching, etc, discuss parallax mapping, give demonstration of how to create a map, etc, similar to above

· We use many programs to create maps, usually a variant of Radiant. (demonstrate radiant)

· Maps are then compiled using the three programs, qbsp3, qvis3, qrad3. (Explain what each does)

· We create map specific shader files, for music, shaders, and weather. (demo examples)

· The map is loaded into memory(there is an option to load the entire map into a single vbo using offsets). We also load all of the pertinent geometry into an ODE trimesh for ragdoll physics collisions.

· Textures are loaded, including normal and heightmaps.

· The map is rendered using a recursive function which sends the surfaces to be rendered to the appropriate batch. If a texture has the appropriate counterparts needed for glsl, it is placed into that batch.

· Each batch is then rendered, i.e, non-glsl, glsl, dynamic.

· We calculate the light source the viewer sees, and send it to glsl.

· Glsl uses the normalmap and light vector to create specular highlights(demonstrate, on and off).

· The parallax effect is created in the glsl shaders(show code).

· Dynamic lights are tracked, and their locations sent to glsl.

· The dynamic light casts a light that reflects off of the appropriate normalmap fragments, and the shadowmap is subtracted, creating the fading penumbra.(show code). We blur the shadow map a bit for a soft look.

Optimizations

· VBO can be used to speed up the rendering process – explain the use of these, showing the portion of code that would have to be built(vertex arrays) vs the use of the offsetted VBO.

· Using GLSL for shader effects is much faster. This is due to things being done in one pass rather than several(explain the concept of how each array would have to be sent to the gpu).

Tips, tricks

· Explain the nuances of making a good deathmatch level

End

